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In this lecture we are going to use the class

equation to prove some nice but non trivial results

But first let's see how the class equation

reads for a particular group Ss

We know that 2 Ss c

Let's find centralizers of elements of Sz
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Recall from Q 8 A4 that a group oforder 98
abelian The theorem below generalizes this

Treonem11 Let G be a group I Gl p for some

prime p Then G is abelian

Proof If 1Gt P2 the possibilities for
12 G I I for p If 12CG 1 102 0 G IG

G Ps abelian

If ECG p Gza tf p Ea is

cyclic D G is abelian

So the only case left 8 can 12cal I



Consider the class equation for
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now I Clay 1 for every ate

p2 P as g load p o Cca G
A E G

which is not possible

Theus b gotcha and this happens A act2cg

So in p divides the second term on

the RHS p also divides the LHS D

f must divide 12 G I 12cal f 1
and so G Ps abelian D



Propositions het to be a prime and let G be a

group with IGI p
n

n 21 Then 2 G 4
e

Proef On Assignment 5

Recall that the converse to Lagrange's Theorem

is not true However for cyclicgroups we saw

that F a unique subgroup for every divisor of
1Gt The next theorem says that the same is

true for certain groups which might not be

cyclic

TheoremI Let to be a prime and let G be

a group with 1Gt Ion n II Then F R

OE k En G has a subgroup of order PR



Remarry The theorem does not say that the

subgroup will be unique That only happens for
cyclic groups

Proof The proof is by induction on n

n L Then 1Gt p D G Tlp and hence
G has a subgroup of order I f fo e

and p p G Thus the theorem is

true for n L

Induction Hypothesis Suppose A group G

w 1Gt pi ich F a subgroup of order

pi Vj oejei
We'll prove the theorem for 1Gt p
From Prop I above 2Ca F e
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Now 2 G is abelian and p 121631 0

by Cauchy's Theorem I see ICG set order p
Consider Lx e CG Since 2CG A G

4 7 4 G So G is a group and
4 7
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by the induction hypothesis has subgr

coups L j of
order to H R oe Ren l

Now ftp.EG soto Cx E Hk as aH 1

Now g ftp.af p that p Kx I
pRtl



So Hk is a subgroup of G of order htt
Ho H Hn i are subgroups of G of

order Is p ph respectively and of course
e E G of order too Hence the theorem
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